New Methods of Image Search

Kai Uwe Barthel

HTW Berlin, University of Applied Sciences
visual-computing.com

pixolution.org
Summary

• History and status quo of image search

• Machine learning, Deep learning
 AI, Convolutional networks, ...
 started a new era of image search:
 • Automatic tagging
 • New image descriptors
 • New image exploration tools
 • New image manipulation tools &
 image synthesis
Image Search: Status Quo & Previous Approaches
There are too many images

- Constantly growing number of images
- Image search is very time consuming
- Only few images can be looked at simultaneously
- No visual browsing schemes are available
Only few images can be looked at at once.
Image search as we know it ...

Keyword search
Keyword search

• Good keywording is expensive, keywords often are incomplete, overloaded or wrongly translated

• Exact keyword matching leads to finding everything or nothing

meadow
826,951 results:

meadow blue sky apple tree clouds flowers family
3 results:
Low-Level Content based Image Search

Search for images with similar colors, textures or shapes

• Finds similar looking images.

• Does not understand the meaning of the images.

• Cannot find similar images that look different
Problem of low-level visual search

Query:

Result:

Visually similar images, content may be different
"More like this" keyword search

Query:
america amazon animal beak bird brazil era eye feather fuss parrot portrait yellow ...
(all keywords of the query image)

Result:

Similar image content,
large appearance variations
Fusing visual and keyword search

Query:

+ america
+ amazon animal
+ beak bird
+ brazil era eye
+ feather fuss
+ parrot portrait
+ yellow ...

Result:

+ Visually similar images and
+ Similar content
But ...
Needs for finding images more easily

1. Most images are untagged
 → need for automatic image understanding

2. There are far too many images
 → need for visual image browsing schemes
Automatic image understanding using AI, ML, Deep Learning
In the 60s, Marvin Minsky assigned a couple of undergrads to spend the summer programming a computer to use a camera to identify objects in a scene. He figured they'd have the problem solved by the end of the summer. Half a century later, we're still working on it.

Today only 2.5 years later the problem is solved.
Automatic image understanding
Automatic image understanding

3264x2448 pixels
16,7 millions of colors

16x16 pixels

16x16 pixels
16 brightness levels
Automatic image understanding

16x16 pixels, 16 brightness levels

The number of possible images:

\[16^{16\times16} = 17976931348623159077293051907890247336179769789423065727343081157732675805500963132708477322407536021120113879871393357658789768814416622492847430639474124377767893424865485276302219601246094119453082952085005768838150682342462881473913110540827237163350510684586298239947245938479716304835356329624224137216\]
Automatic image understanding

- Easy case: Image with 2 pixels, black & white
- Possible questions: Are both pixels ...

<table>
<thead>
<tr>
<th>black?</th>
<th>white?</th>
<th>different?</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>
Neuronal Networks (NN)

• Origin in the 60s (Perceptron)
 Impossible to solve the XOR problem

• Restart in the 80s:
 Hidden layers & Backpropagation
 Not suited for image recognition

• Restart a few years ago:
 Today the best technology for
 solving all kind of problems for which
 humans cannot describe an algorithm
Neural Networks (NN)

...can be trained to answer these questions:

Are both pixels white? Are both pixels different?

Idea: Use huge networks to make image recognition possible ...
Did not work for a long time! :(

- Not enough tagged example images
- Computers were too slow
- Fully connected neural networks were hard to train
Deep Learning / Image Classification

Neuronal Network Image Analysis

unknown image → Neuronal Network Image Analysis → categories

dog (0.01) cat (0.04) boat (0.94) bird (0.02)
Filters and Activations
Convolutional Neural Networks
Automatic Image Tagging
Typical ML-based keywording
Upload your photo

You can upload a photo or paste a URL of an image

Note: By uploading files here you agree to have them temporarily stored in our training dataset for the sole purpose of improving Imagga's technology.

UPLOAD IMAGE

Generated tags

Concepts

- reel: 29.80%
- equipment: 21.85%
- winder: 19.92%
- technology: 17.73%
- mechanical device: 14.95%
- business: 12.18%
- metal: 12.13%
- motor: 11.64%
- car: 11.01%
- security: 10.96%

► show me more tags

Try with example images

Select one of the following images to see the results:

Image URL

https://s3.amazonaws.com/imagga-demo-uploads/tagging-demo/4b3a22b0e8e

Tip: You can paste any image URL here and get tags.

 Include colors (Might be slower)

Analyze
Use your own images & keywords

- Unknown image
 - Neuronal Network Image Analysis
 - Descriptor

 - Visual descriptors of the image archive
 - Similarity Matching
 - Similar images with keywords
 - Keyword aggregation
 - Keywords
Semi-automatic Tagging akiwi.eu

akiwi finds keywords for your images.
1. Click any image that is similar to yours.

2. If there are no similar images, click or enter a keyword that describes your image best.

3. Continue until most keywords are correct. Then click 'Finalize'.

Keywords: car, power, electricity, electric, environment, vehicle, charging, energy, transportation, cable, automobile, battery, alternative, electric car, transport.
New Image Descriptors
Image descriptors from NN

Neuronal Network Image Analysis

[Diagram showing process involving Neuronal Network Image Analysis]
What are Neural Networks good at?

Recognition of

- Objects (type, manufacturer, ...)
- Humans (sex, age, mood, posture, ...)
- Style, Artist, Composition, ...

Everything a human (expert) could recognize in a few seconds.

If you have enough data to train the network
Global vs. local analysis

neural network

global keywords / features

neural network

local keywords / features
What kind of descriptors will we have?

A combination of keywords describing the image?

or

A collection of features characterizing image content, style, mood & look? (language independent)
A female tennis player in action on the court.

A group of young men playing a game of soccer.

A man riding a wave on top of a surfboard.
Visual Image Browsing
Searching by scrolling
Image Projection using t-SNE

unused display area

overlapping images
Google Image Swirl

not clear how to navigate
Requirements for image browsing

- **Image layout/projection:**
 - use entire display area, no overlap
 - good mapping (similar neighbor images)

- **Image sets:**
 - support for millions of (untagged) images
 - allow changes (deleted or added images)

- **Navigation:**
 - easy & natural
 - purely visual (without keywords)
 - hierarchical approach
Our initial approach

based on the idea of mapping services
Image sorting using a fast hierarchical SOM

unsorted sorted

complexity $O(n \log(n))$, 50 times faster than Barnes-Hut t-SNE, similar projection quality
Hierarchical image layers
Evaluation of picsbuffet

+ Good visualization & easy navigation
+ Very fast (no server calculations)
+ Suited for very large image sets

- Image relationships are too complex to be mapped to 2D
- Bad for changing image sets
- Sometimes poor neighbors

improved image features

image graphs
Requirements for improved image browsing

1. High quality semantic image features to model image similarities well
2. Fast construction of “good“ hierarchical image graphs
3. Good graph visualization and easy to use navigation techniques
2. Graph requirements

A. Connected images should be similar.
B. The number of connections per image should not be too high or too low.
C. The path between any two images should be as short as possible.

Very hard optimization problem!

➡ A: ensured by good image features & graph building
➡ B: fixed to 4 connections
➡ C: simplified by checking the connectivity
2. Building the graph

Starting from a regular mesh we swap edges if

\[\text{sim}_{AX} + \text{sim}_{EY} - \text{sim}_{AE} - \text{sim}_{XY} > 0 \]

Finds good graphs, but convergence is slow
Better swapping, RGB color example
Visualizing and navigating graphs is difficult. Layout algorithms are slow. Radial views are confusing.
3. Our approach for graph navigation

- Project fractions of the graph to a 2D map and perform instant 2D sorting
- Zooming is performed by blending to a graph of the next level
3. Graph Navigation

Moving the map retrieves new images from the graph.
Demo of Graph-based Browsing
New Image Manipulation Tools
&
Image Synthesis
If you do not have the image you want ...

• Render it from a 3D model
• Change an existing image
• Synthesize it
Rendered Images (IKEA)
Style Transfer
deepart.io

Leon A. Gatys, Alexander S. Ecker, Matthias Bethge
Image Manipulation II

Monet ↔ Photos

Monet → photo

photo → Monet

Summer ↔ Winter

summer → winter

winter → summer

Zebras ↔ Horses

zebra → horse

horse → zebra

Van Gogh

Cezanne

Ukiyo-e

Photograph

Monet
Image Manipulation III
Image Synthesis I

redshank
dark
volcano

Anh Nguyen, Jason Yosinski, Yoshua Bengio, Alexey Dosovitskiy, Jeff Clune
this small bird has a pink breast and crown, and black primaries and secondaries.

this magnificent fellow is almost all black with a red crest, and white cheek patch.

the flower has petals that are bright pinkish purple with white stigma

this white and yellow flower have thin white petals and a round yellow stamen

Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee
One day we'll be talking about good old "hand-crafted" films and instead the norm will be watching AI-generated (infinite) content on demand.
Thank you!

Prof. Dr. Kai Uwe Barthel
barthel@pixolution.de

Hochschule für Technik und Wirtschaft Berlin
University of Applied Sciences

visual-computing.com

pixolution
pixolution.org