
IPTC EXTRA project
D1.4 EXTRA Rule Language Design
Version 1.0 - 10 March 2017

This deliverable specifies the design of the EXTRA rule language and provides several
examples and use cases.

Overview
Given that the purpose and nature of EXTRA rules are very similar to that of queries, a decision
has been made for the EXTRA rule language to be based on an established query language. An
initial set of query languages that had been identified by the requirement analysis as potential
candidates for covering a large part of the expected features (in terms of operators, listed in
Table 3) include the XQuery Full Text , the Elastic Search Query DSL , and the proprietary 1 2

language used by SAS Teragram suite . In addition to these three options, the Contextual 3

Query Language was also considered as an attractive option, while other options, such as 4

SQL, were not considered for selection due to their highly technical orientation and mismatch
with the end user application.
Overall, there are several criteria used for selecting the query language that will serve as basis
for expressing the EXTRA rules. These include the following: a) expressive power, b) simplicity
for end users, c) quality and wealth of documentation, d) supporting software tools and libraries,
e) alignment with EXTRA technical approach and framework (as described in D1.1).
In addition, a requirement for the selected language has been to be based on an openly
available and free-to-use specification. As a result, the Teragram language was excluded from
the list of candidates due to its proprietary nature.
Table 1 summarizes the main advantages and disadvantages of selecting one of the three
considered languages as basis for expressing EXTRA rules. In terms of expressive power, all
three candidates offer built-in support for many of the required operators, with XQuery FT
having a slight advantage in terms of number of built-in supported operators. On the other hand,
CQL is extensible and can be thus appropriately tailored to support the operators that are not
inherently supported. In terms of simplicity for end users, CQL appears to be easier to read,
even for users without prior experience. In contrast, ES DSL is probably the most difficult
language for end users among the three options. In terms of documentation, XQuery FT and ES
DSL are in better position compared to CQL, given the presence of very active developer/user

1 https://www.w3.org/TR/xpath-full-text-10/
2 https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
3 https://www.sas.com/en_us/software/teragram.html
4 http://www.loc.gov/standards/sru/cql/index.html

https://www.w3.org/TR/xpath-full-text-10/
http://www.loc.gov/standards/sru/cql/index.html
https://www.sas.com/en_us/software/teragram.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html

communities. Also, all three languages are supported by software libraries that could be used
for parsing and translating queries.

In conclusion, our preliminary analysis of the existing options has led us to decide on using
CQL as the initial basis of the development for EXTRA. Appropriate extensions will be needed
in order to support the operators and requirements of EXTRA.

Table 1: Summary of characteristics of candidate query languages.

 XQuery FT ES DSL CQL

Expressive power + many of the operators
are supported.

+ many of the operators
are supported.
- important operators as
minimum_occurence as
missing

+ extensible, hence its
expressiveness can be
enriched by users

Simplicity for users + some users are familiar
with the language.

- not many users are
familiar with the ES DSL.
- not particularly easy for
novice users.
- in many cases queries
are much more verbose,
compared to the other
option

+ easy to read for end
users, even for those
who are non-experts

Documentation + W3C standard means
official documentation
meets high standards
+ >3K questions tagged
“xquery” on stackoverflow

+ high-quality official
documentation
+ >23K questions tagged
“elasticsearch” on stackov.

- other than the official
documentation under
www.loc.gov, only scarce
documentation available

Supporting software + rich ecosystem of tools
and libraries, e.g. Saxon,
Zorba, BaseX, eXist

+ built-in support for ES
+ rich ecosystem of tools
and libraries

+ support for translation
to ES DSL.

Alignment with EXTRA - an additional translation
layer would be necessary
in order to be supported

+ ES will serve as the
indexing layer of EXTRA,
so no translation would be
needed for already
supported operators.

- an additional translation
layer would be necessary
in order to be supported

In order to validate the EXTRA rule language in terms of design and in terms of implementation,
an appropriate set of test rules will need to be created. To ensure that the validation and testing
is thorough and sufficient, we envision that this set of rules should have the following properties:

● Coverage of operators: Each operator of the ones listed in Table 3 should be used by at
least one of the test rules.

● Representative size: The set of rules should contain rules of varying size, measured by
number of terms per rule. This would enable the testing both in terms of ease of reading
by end of users and in terms of performance (response time).

● Complexity: The set of rules should be representative of the complexity of rules used in
real use cases. At least some of the rules should be of very high complexity, e.g.
containing wildcards, “expensive” operators, etc.

http://saxon.sourceforge.net/
http://www.zorba.io/home
http://www.loc.gov/
http://basex.org/products/xquery/
http://exist-db.org/exist/apps/homepage/index.html

● Language/corpus: Rules should target both EXTRA corpora (English, German).
● Nested rules: The test set should contain a few nested rules at minimum.

XQuery FT
XQuery is a query and functional programming language that queries and transforms collections
of structured and unstructured data, usually in the form of XML, text and with vendor-specific
extensions for other data formats (JSON, binary, etc.). The language is developed by the XML
Query working group of the W3C. XQuery and XPath Full Text 1.0 is an extension of the original
XQuery language to enable full-text search, as well as structured searches, against XML
documents. Its specification is maintained by W3C on https://www.w3.org/TR/xpath-full-text-10/

ElasticSearch Query DSL
Elasticsearch provides a full Query DSL based on JSON to define queries. The query DSL is a
flexible, expressive search language that Elasticsearch uses to expose most of the power of
Lucene through a simple JSON interface. The ES queries consist of query clauses, which can
be either leaf clauses, i.e. clauses used to compare a field (or fields) to a query string, or
compound clauses, i.e. clauses used to combine other query clauses.

Contextual Query Language
CQL, the Contextual Query Language , is a formal language for representing queries to 5

information retrieval systems such as web indexes, bibliographic catalogs and museum
collection information. The design objective is that queries be human readable and writable, and
that the language be intuitive while maintaining the expressiveness of more complex languages.
Traditionally, query languages have fallen into two camps: Powerful, expressive languages, not
easily readable nor writable by non-experts (e.g. SQL, PQF, and XQuery);or simple and intuitive
languages not powerful enough to express complex concepts (e.g. CCL and google). CQL tries
to combine simplicity and intuitiveness of expression for simple, everyday queries, with the
richness of more expressive languages to accommodate complex concepts when necessary.
Contextual Query Language:
There are some interesting software projects that could be usable by EXTRA, for instance a
Java library for translating CQL to ES queries, and a Perl library that serves a similar purpose.
In addition, CQL-Java is a CQL compiler written in Java, maintained by Index Data
More CQL documentation is available here and here.

5 http://www.loc.gov/standards/sru/cql/spec.html

https://www.w3.org/TR/xpath-full-text-10/
https://github.com/xbib/cql
http://docs.oasis-open.org/search-ws/searchRetrieve/v1.0/os/part5-cql/searchRetrieve-v1.0-os-part5-cql.html
http://www.indexdata.com/cql-java
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://cirrus.apa.at/index.php/s/qMJfdXHAlNDdtuo
http://zing.z3950.org/cql/intro.html
http://www.loc.gov/standards/sru/cql/spec.html

JSONiq
JSONiq is a language, expressed in XQuery, for querying structured data (in JSON). The 6

JSONiq syntax enables to dynamically construct objects and arrays using a syntax close to
JSON. Nesting of expressions inside these constructors are allowed. JSONiq also provides a
syntax for updating JSON objects and array. The language is expressive and highly optimizable
for querying and updating NoSQL stores. Yet, it is designed for use by developers.

Example Rules
Table 2 presents a comparison of the three candidate languages through an example of a
simple rule called “Anemia” that intends to classify documents that relate to the well-known
blood disorder. The example rule makes use of the AND and OR operators, wildcards and a
minimum occurrence constraint.

Table 2: An example rule called “anemia” expressed in the three language candidates.

XQuery FT:
(
 (
 {("anemia.*", "anaemia.*")} any word occurs at least 4 times using wildcards
)
 ftor
 (
 (
 {("anemia.*", "anaemia.*")} any word occurs at least 3 times using wildcards
)
 ftand
 (
 {("patient", "anemic", "treatment","AOP","haemoglobin","hemoglobin","red blood cell","red blood-cell",
"thalassaemias","sickle-cell","sickle
cell","RBC","hypoxia","symptom","hematocrit","Microcytic","Normocytic","Macrocytic","erythropoietin","anaemic","a
plastic","hemolytic","disorder","disease","myelodysplastic","illness")} any word occurs at least 4 times using
stemming
)
)
)

6 http://www.jsoniq.org/

http://www.jsoniq.org/

ES DSL : 7

{
 "bool": {
 "should": [
 {
 "simple_query_string": {
 "default_operator": "or",
 "fields": [
 "_all"
],
 "query": "anemia* anaemia*"
 }
 },
 {
 "must": [
 {
 "simple_query_string": {
 "default_operator": "or",
 "fields": [
 "_all"
],
 "query": "anemia* anaemia*"
 }
 },
 {
 "match": {
 "_all": {
 "analyzer": "english_analyzer",
 "operator": "or",
 "query": "patient anemic treatment AOP haemoglobin hemoglobin red blood cell red blood-cell
thalassaemias sickle-cell sickle cell RBC hypoxia symptom hematocrit Microcytic Normocytic Macrocytic
erythropoietin anaemic aplastic hemolytic disorder disease myelodysplastic illness"
 }
 }
 }
]
 }
]
 }
}

CQL:
(
 (cql.allIndexes any/extra.count>4 "anemia* anaemia*")
 or
 (
 ((cql.allIndexes any/extra.count>3 "anemia* anaemia*"))
 and
 (cql.allIndexes any/stem/extra.count>4 "patient anemic treatment AOP haemoglobin hemoglobin red blood cell
red blood-cell thalassaemias sickle-cell sickle cell RBC hypoxia symptom hematocrit Microcytic Normocytic
Macrocytic erythropoietin anaemic aplastic hemolytic disorder disease myelodysplastic illness")

7 As ES Query Language does not support retrieval of documents based on minimum occurrences of
terms or statements, this query is slightly different from the queries expressed in XQuery FT and CQL.
Namely, the requirement to have a statement occur more than N times is expressed in ES in a relaxed
way by demanding only for its existence. The actual validation i.e. if the statement occurs more than N
times, can be implemented as a post-processing step in the procedure of retrieval.

)
)

 Table 3: List of rule operators based on the IPTC EXTRA requirements. Support for unshaded rules is mandatory.
Rules shaded in green are optional but high-priority, and rules shaded in yellow are optional and of secondary

priority.

Operator Definition

1 AND Takes two or more statements. Category matches only if all the statements are true.

2 OR Takes two or more statements. Category matches if at least one statement is true.

3 NOT Used in combination with AND. Category matches if the statement does not appear in
combination with statement under the AND.

4 MINIMUM Combined with a number (e.g., MINIMUM_2). Takes one or more statements. Category
matches if a minimum of x statements from the list appear in the text.

5 DISTANCE Combined with a number. Takes two or more statements. Category matches if
statements are within x number of words from each other.

6 MINIMUM
OCCURRENCE

Combined with a number. Takes one or more statements. Category matches if
statement appears x amount of times in the text.

7 ORDER Takes two or more statements. Category matches if statements appear in the text in the
same order that they appear in the rule.

8 SENTENCE Takes two or more statements. Category matches if statements appear within the same
sentence.

9 NOT WITHIN
DISTANCE

Combined with a number. Takes two or more statements. Category matches if the
statements are not within x amount of words from each other.

10 PARAGRAPH Takes two or more statements. Category matches if all the statements occur in the
same paragraph.

11 NOT IN
PHRASE

Takes two statements. Category matches if the first statement occurs outside of the
second statement.

12 NOT IN
SENTENCE

Takes two or more statements. Category matches if all the statements do appear in the
same document, but not in the same sentence.

13 NOT IN
PARAGRAPH

Takes two or more statements. Category matches if all the statements do appear in the
same document, but not in the same paragraph.

14 ORDER AND
DISTANCE

Combined with a number. Takes two or more statements. Category matches if both
statements occur in the same order in which they are written in the rule and if both are
within x amount of words to each other.

15 MAXIMUM
OCCURRENCE

Combined with a number. Takes at least one statement. Category matches if the
statement appears no more than x amount of times in the text.

16 FROM START Combined with a number. Takes one or more statements. Category matches if the
statement appears within x amount of words from the start of the text.

17 FROM END Combined with a number. Takes one or more statements. Category matches if the
statement appears within x amount of words from the end of the text.

18 MAXIMUM
SENTENCES

Combined with a number. Takes one or more statements. Category matches if the
statements appear with the first x sentences.

19 MAXIMUM
PARAGRAPHS

Combined with a number. Takes one or more statements. Category matches if
statement appears within the first x paragraphs.

20 PARAGRAPH
POSITION

Combined with a number. Takes one or more statements. Category matches if
statement appears within the x-th paragraph.

Table 4: EXTRA operators expressed in the three candidate languages.

Operator XQuery FT ES DSL CQL

1 AND ftand {"bool":{"must"}} and

2 OR ftor {"bool":{"should"}} or

3 NOT ftnot {"bool":{"must_not" }} not

4 MINIMUM N/A N/A any/extra.countunique>N 8

5 DISTANCE distance (exactly|at
least|at most|from X to Y)

span_near with slop param prox/relation/distance/unit/
ordering 9

6 MINIMUM
OCCURRENCE

{} any word occurs at
least N times

N/A any/extra.count>N 10

7 ORDER ordered span query with in_order
param set to "true"

ordered

8 SENTENCE same sentence nested AND queries
(sentences need to be
indexed as sub-fields in ES)

prox///sentence

9 NOT WITHIN
DISTANCE

($a ftand $b) ftand ftnot
($a ftand $b distance
exactly N words)

span_not with dist param set ($a and $b) not ($a
prox/=/N/word 11

10 PARAGRAPH same paragraph nested AND queries
(paragraphs need to be
indexed as sub-fields in ES)

prox///paragraph

11 NOT IN
PHRASE

not in span_not $a not ($a prox $b)

12 NOT IN
SENTENCE

different sentence nested AND queries
(sentences need to be
indexed as sub-fields in ES)

$a not ($a
prox///sentence $b)

8 Requires a custom relation modifier (in the 'extra' namespace); N=number of words
9 E.g. prox/<=/1/word/unordered
10 Requires a custom relation modifier (in the 'extra' namespace); N=number of words
11 N=number of words

13 NOT IN
PARAGRAPH

different paragraph nested AND queries
(paragraphs need to be
indexed as sub-fields in ES)

$a not ($a
prox///paragraph $b)

14 ORDER AND
DISTANCE

distance (exactly|at
least|at most|from X to Y)
ordered

span_near with in_order
param set to "true"

prox/relation/distance/unit/
ordered 12

15 MAXIMUM
OCCURRENCE

{} any word occurs at
most N times

N/A any/extra.count<N

16 FROM START N/A N/A any/extra.fromstart>N

17 FROM END N/A N/A any/extra.fromend>N

18 MAXIMUM
SENTENCES

N/A N/A TBD

19 MAXIMUM
PARAGRAPHS

N/A N/A TBD

20 PARAGRAPH
POSITION

N/A N/A TBD

12 foo prox/>/4/word/ordered bar

