
IPTC EXTRA project
D1.2 EXTRA API Design
Version 1.0 - 10 March 2017

This deliverable provides the design and definition of the EXTRA API, which supports the
maintenance of rules and the classification of documents. The API definition uses the RAML 1.0
specification . 1

Overview
The design of the EXTRA API is largely based on the user stories that are specified in the IPTC
EXTRA requirements document . According to it, there are five types of resource of interest: 2

● Rules
● Document classifications
● Document and Rule Validations
● Schemas
● Dictionaries
● Relevance Algorithms

Hence, each of these resources is directly mapped to a REST endpoint, resulting in the
following six endpoints:

● /rules
● /classifications
● /validations
● /schemas
● /dictionaries
● /relevancealgorithms

For each of those, a set of relevant CRUD operations (Create, Retrieve, Update, Delete) are
defined and the necessary parameters and response structures are specified when possible.
Resource Creation is implemented using the HTTP POST method, Retrieve is implemented
using GET, Update using PUT, and Delete using DELETE. The API is still not fully specified,
since several of the specifics, e.g. regarding the rule language and the selected relevance
algorithms are not fixed at the moment of writing this set of specifications.
The specification of the API is based on RAML 1.0 in order to leverage automatic scaffolding
tools and other helpful utilities, such as for instance the RAML2HTML documentation 3

1 ​https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md/
2 ​https://iptc.org/download/workstream/extra/IPTC-EXTRA-TechnicalRequirements_v100_2017-01-30.pdf
3 ​https://github.com/raml2html/raml2html

https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md/
https://iptc.org/download/workstream/extra/IPTC-EXTRA-TechnicalRequirements_v100_2017-01-30.pdf
https://github.com/raml2html/raml2html

generator, which automatically creates online documentation based on the specification (cf.
Figure 1). RAML editing is done based on the Anypoint Platform . 4

This document presents the five EXTRA API endpoints and is accompanied by a .raml file
containing the API specification (Appendix I), along with an HTML file containing the API
web-based documentation (Appendix II).

4 ​https://anypoint.mulesoft.com

https://anypoint.mulesoft.com/

Figure 1:​ Snapshot from auto-generated HTML documentation based on RAML 1.0 API specification

API Documentation
Note that compared to the actual .raml files that have been delivered, some parts have been
omitted for the sake of brevity and cleaner presentation.

#%RAML 1.0
title:​ Extra Rule Engine API
version:​ v0.1
mediaType:​ application/json

types: Rule:
 type: object
 properties:
 id:
 required: true
 type: string
 description: The unique
identifier of the rule
 query:
 required: true
 type: string
 description: The query
represent the actual rule,
expressed in Extra Rule
Language
 uid:
 required: true
 type: string
 description: The id of the
user that created the rule

Document:
 type: object
 properties:
 id:
 required: true
 type: string
 schema:
 required: false
 type: Schema
 description: The schema
associated with the document

RelevanceAlgorithm:
 type: object
 properties:
 id:
 required: true
 type: string
 description: A unique
identifier of the specific
relevance algorithm
 name:
 required: false
 type: string
 description: A
human-readable name for
relevance algorithm
 example:
FrequencyByWordCount
 algorithm:
 required: false
 type: string
 description: A
representation of the algorithm
in a way that will be defined
later
 ruleids:
 required: false
 type: string[]
 description: A set of rule
ids that this algorithm is a
rule-specific algorithm

Schema:
 type: object
 properties:
 name:
 required: true
 type: string

Dictionary:
 type: object
 properties:
 id:
 required: true
 type: string

 description: The name of
the schema, used as a unique
identifier
 fields:
 required: true
 type: string[]
 description: The set of
fields associated with that
schema

 description: A unique
identifier of the dictionary
 language:
 required: false
 type: string
 description: The language of
this dictionary
 terms:
 required: true
 type: string[]
 description: The set of words
appear in this dictionary

traits pageable:
 usage: Apply this to any method that needs
pagination
 queryParameters:
 page:
 displayName: Page Number
 type: integer
 description: Page number of the collection
 example: 1
 default: 1
 required: false
 numPerPage:
 displayName: Number of items per page
 type: integer
 example: 50
 default: 20
 maximum: 100
 required: false

secured:
 usage: Apply this to any method that needs to
be secured
 description: Some requests require
authentication.
 headers:
 access_token:
 description: Access Token
 example: ztVRauPEtguEfWuJnfHDVhWaaS
 required: true
 responses:
 401:
 description: This code returned in case of
unauthorized access
 body:
 application/json:
 example: |
 {"message":"Invalid access token"}

Rules

/rules:
 description: A collection of rules
 is: secured

get: is: pageable
 description: Get a collection of rules based on filtering criteria like user, status and category
 queryParameters:
 uid:
 displayName: User ID

 type: string
 description: The id of the logged in user. Retrieve rules created by this user.
 example: 1546058f-5a25-4334-85ae-e68f2a44bbaf
 required: true
 status:
 displayName: Rule Status
 type: string
 description: Retrieve rules having the status specified by this parameter.
 example: "submitted"
 required: false
 responses:
 200:
 body:
 application/json:
 example: |
 [
 {
 "id" : "1",
 "uid" : "1546058f-5a25-4334-85ae-e68f2a44bbaf",
 "query" : "title:(donald trump AND us elections) OR (jim mattis AND defense)",
 "status": "editable"
 },
 {
 "id" : "2",
 "uid" : "1546058f-5a25-4334-85ae-e68f2a44bbaf",
 "query" : "title:(us elections) AND body:(barack obama)"
 }
]
 type: Rule[]

post: description: Create a new rule as defined in the body of the method
 body:
 application/json:
 type: Rule
 responses:
 201:
 headers:
 Location:
 example: /rules/1
 body:
 application/json:
 type:
 properties:
 message: string
 rule: Rule
 example: |
 {
 "message": "Rule created successfully",
 "rule": {
 "id" : "1",
 "uid" : "1546058f-5a25-4334-85ae-e68f2a44bbaf",
 "query" : "title:(donald trump AND us elections) OR (jim mattis AND defense)"
 }
 }
 400:
 body:
 application/json:
 example: |
 {"message":"Cannot create the rule"}
 409:

 body:
 application/json:
 example: |
 {"message":"Conflict. Rule with id=1 already exists"}

/rules/{ruleid}:
 is: secured
 description: A specific rule, a member of the rules collection
 uriParameters:
 ruleid:
 type: string

get: description: Retrieve the rule defined by the specific ruleid
 responses:
 200:
 body:
 application/json:
 example: |
 {
 "id" : "1",
 "uid" : "1546058f-5a25-4334-85ae-e68f2a44bbaf",
 "query" : "title:(barack obama)",
 }
 type: Rule
 404:
 body:
 application/json:
 type:
 properties:
 message: string
 example: |
 {
 "message": "Rule not found"
 }

put: ​ description: Update the rule defined by the specific ruleid or insert if the rule does not exist
 body:
 application/json:
 type: Rule
 responses:
 201:
 body:
 application/json:
 type:
 properties:
 message: string
 rule: Rule
 example: |
 {
 "message": "Rule updated successfully",
 "rule": {
 "id" : "1",
 "uid" : "1546058f-5a25-4334-85ae-e68f2a44bbaf",
 "query" : "title:(barack obama)"
 }
 }
 400:
 body:
 application/json:
 example: |

 {"message": "Rule failed to be updated"}
 404:
 body:
 application/json:
 example: |
 {"message": "Rule not found"}

delete: description: Delete the rule defined by ruleid={ruleid}
 responses:
 204:
 body:
 application/json:
 type:
 properties:
 message: string
 example: |
 {"message":"Rule deleted"}
 404:
 body:
 application/json:
 type:
 properties:
 message: string
 example: |
 {"message": "Rule {ruleid} not found"}

Classifications

/classifications:
 description: A collection of classification rules given a specific document
 is: secured

post: body:
 application/json:
 type:
 properties:
 document: Document
 matches:
 type: object[]
 description: A set of rule IDs for classification
 required: false
 parameters:
 type: object
 description: A set of rule modification parameters
 required: false
 example: |
 {
 "document": {
 "id" : "g1DWjQm2MXFqzdfWr8ka",
 "title" : "this is a test document",
 "body" : "this is the text body of the document"
 },
 "matches": [
 {"ruleid": "1"},

 {"ruleid": "1234"}
],
 "parameters": {
 "minimum_occurrence": ".25",
 "relevance algorithm": "relalg123",
 "highlight": false
 }
 }
 responses:
 201:
 body:
 application/json:
 type:
 properties:
 found: integer
 matches: object[]
 example: |
 {
 "found": 2,
 "matches": [
 {
 "ruleid" : "1234",
 "relevance": 0.9
 },
 {
 "ruleid" : "456",
 "relevance": 0.75
 }
]
 }
 400:
 body:
 application/json:
 example: |
 {"message":"Classification failed."}

Validations

/validations:
 is: secured

post: description: Validate a rule or document against a schema (if not specified validation is performed
against all
 body:
 application/json:
 type:
 properties:
 rule:
 type: Rule
 required: false
 document:
 type: Document
 required: false
 schemas:

 type: string[]
 required: false
 responses:
 200:
 body:
 application/json:
 type:
 properties:
 valid: boolean
 schemas: string[]
 invalidFields: string[]
 examples:
 valid:
 {
 "valid": true,
 "schemas": [
 "1", "45", "109"
],
 "invalidFields": []
 }
 invalid:
 {
 "valid": false,
 "schemas": [],
 "invalidFields": [
 "_Headline", "_tmac"
]
 }
 400:
 body:
 application/json:
 type:
 properties:
 message: string
 example: |
 {"message":"Invalid input. Exactly one rule or one document must be specified."}

Schemas

/schemas:
 description: A collection of schemas
 is: secured

get: description: Get a list of schemas
 is: pageable
 responses:
 200:
 body:
 application/json:
 type: Schema[]

post: description: Create a new schema

 body:
 application/json:
 type: Schema
 responses:
 201:
 body:
 application/json:
 type: Schema
 400:
 body:
 application/json:
 example: |
 {"message":"Schema failed to be saved"}
 409:
 body:
 application/json:
 example: |
 {"message":"Conflict. Schema already exists"}

/schemas:/{schemaid}:
 is: secured
 uriParameters:
 schemaid:
 type: string

get:

 description: Get a schema having schemaid={schemaid}
 responses:
 200:
 body:
 application/json:
 type: Schema
 404:
 body:
 application/json:
 type:
 properties:
 message: string
 example: |
 {"message" : "Schema not found"}

put:

 description: Update schema having schemaid={schemaid}
 body:
 application/json:
 type: Schema
 responses:
 200:
 body:
 application/json:
 type:
 properties:

 message: string
 schema: Schema
 404:
 body:
 application/json:
 type:
 properties:
 message: string
 example: |
 {"message" : "Schema not found"}

delete:

 description: Delete a schema having schemaid={schemaid}
 responses:
 204:
 body:
 application/json:
 type:
 properties:
 message: string
 example: |
 {
 "message" : "Schema deleted"
 }
 404:
 body:
 application/json:
 type:
 properties:
 message: string
 example: |
 {
 "message" : "Schema not found"
 }

Dictionaries

/dictionaries:
 description: A collection of dictionaries
 is: secured

get: is: pageable
 description: Get a collection of dictionaries
 queryParameters:
 language:
 type: string

 required: false
 description: Filter dictionaries based on their language
 example: en
 responses:
 200:
 body:
 application/json:
 type: Dictionary[]

post: body:
 application/json:
 type: Dictionary
 responses:
 201:
 body:
 application/json:
 type: Dictionary

/dictionaries/{dictionaryid}:

get: description: Get a dictionary having 'dictionaryid={dictionaryid}'
 responses:
 200:
 body:
 application/json:
 type: Dictionary
 404:
 body:
 application/json:
 type:
 properties:
 message: string
 example: |
 {"message":"Dictionary not found"}

put: body:
 application/json:
 type: Dictionary
 responses:
 200:
 body:
 application/json:
 type:
 properties:
 message: string
 dictionary: Dictionary
 404:
 body:
 application/json:

 type:
 properties:
 message: string
 example: |
 {"message":"Dictionary not found"}

delete: description: Delete a dictionary having the specific dictionary
 responses:
 204:
 body:
 application/json:
 type:
 properties:
 message: string
 example: |
 {
 "message" : "Dictionary deleted"
 }
 404:
 body:
 application/json:
 type:
 properties:
 message: string
 example: |
 {
 "message" : "Dictionary not found"
 }

Relevance Algorithms

/relevancealgorithms:
 description: A collection of relevance algorithms
 is: secured

get: is: pageable
 description: Get a collection of relevance algorithms
 responses:
 200:
 body:
 application/json:
 type: RelevanceAlgorithm[]

post: body:
 type: RelevanceAlgorithm
 responses:

 201:
 body:
 application/json:
 type: RelevanceAlgorithm

 /relevancealgorithms/{relevancealgorithmid}:
 is: secured

get: description: Get relevance algorithm having relevancealgorithmid={relevancealgorithmid}
 responses:
 200:
 body:
 application/json:
 type: RelevanceAlgorithm
 404:
 body:
 application/json:
 type:
 properties:
 message: string
 example: |
 {
 "message" : "Relevance algorithm not found"
 }

put: description: Update relevance algorithm having relevancealgorithmid={relevancealgorithmid}
 responses:
 200:
 body:
 application/json:
 type:
 properties:
 message: string
 relevanceAlgorithm: RelevanceAlgorithm
 example: |
 {
 "message" : "Relevance algorithm updated",
 "relevanceAlgorithm" : {
 "id": "1",
 "algorithm" : "ALGORITHM REPRESENTATION"
 }
 }

delete: description: Delete relevance algorithm having relevancealgorithmid={relevancealgorithmid}
 responses:
 204:
 body:
 application/json:
 type:

 properties:
 message: string
 example: |
 {
 "message" : "Relevance algorithm deleted"
 }
 404:
 body:
 application/json:
 type:
 properties:
 message: string
 example: |
 {
 "message" : "Relevance algorithm not found"
 }

