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This deliverable provides a high-level description of the selected technical approach and the 
design of the proposed solution. It justifies the design of the proposed system architecture as 
well as the selected implementation technologies.  

Overview 
Given the foreseen large scale of classification rules (2M according to the EXTRA requirements  1

document), the exhaustive evaluation of an input document against all rules is expected to be 
impractical for very large rule sets, i.e. it would lead to execution times much larger than the one 
second mark that is defined by the requirements as acceptable. To this end, the proposed 
solution must be able to quickly select only a subset of candidate rules and evaluate a 
document only on this limited set. To this end, the main steps to be followed are the following: 

1. Given a structured document, a set of candidate rules is selected from the rule index. To 
implement this step, it is crucial to use an indexing structure that supports accurate and 
fast retrieval of the appropriate rule subset. 

2. The set of candidate rules is evaluated against the input document. In the ideal scenario, 
the list of candidate rules is small and all of them match the input document.  

3. For all rules that match the input document (i.e. evaluate to TRUE), a default or custom 
relevance function is computed.  

An overview of the architecture of the proposed solution is depicted in Figure 1. A brief 
description of the modules of EXTRA rules engine is presented in Table 1. Storage and access 
of rules (in their initial format as entered by the end users), and other data objects such as 
schemas, dictionaries and relevance algorithms, is implemented on top of a native JSON 
database (such as mongoDB), denoted as DB. This component supports the basic CRUD 
operations as defined in the requirements through an appropriate set of API methods. 
Functionalities such as validation of rules and documents are performed from the API that 
communicates directly with the DB component.  
Regarding the classification of documents, the core component of EXTRA is the Rules Index 
(RI). This is an indexing data structure that supports the efficient search/selection of rules based 
on input documents (using the facilities of ElasticSearch percolate as will be explained below). 
To perform the indexing of rules, the Rules Mapper component takes care of transforming the 
EXTRA rules, described in EXTRA Rule Language, into an internal representation that is usable 

1 https://iptc.org/download/workstream/extra/IPTC-EXTRA-TechnicalRequirements_v100_2017-01-30.pdf  
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by the underlying indexing framework (ES percolate). Also, RM is responsible for the 
decomposition of rules into simpler forms as will be described in the next section.  
The actual document classification pipeline starts from the Rules Selector (RS) component, 
which analyzes the input document and transforms into an appropriate representation that can 
be used for efficient retrieval of the candidate rules from the RI. For example, assuming that 
Elastic Search is used as the underlying indexing framework, RS transforms input documents 
into percolate queries and requests for rules match the document from RI. Then, the Rules 
Evaluator (RE) iterates over the set of retrieved rules and calculates whether each of them truly 
matches the input document. As candidate rules can be parts of other rules (as a result of 
decomposition takes place in Rules Mapper) this module is responsible to identify the initial 
rules activated by the input document. Finally, the Rules Ranker (RR) calculates the score for 
each rule based on the specified relevance algorithm, that indicates how  strongly the document 
matches each rule. The set of available relevance algorithms and their parameters are stored in 
the DB module, and the end user can select the appropriate algorithm during classification. 
These three modules, depicted within a green frame in Figure 1, are successive steps of the 
classification process and are exposed as a single API method.  
 
 

Table 1: Modules of EXTRA rules classification engine 

Module Description  

EXTRA API This module exposes the functionality of EXTRA as a set of REST methods.  

DB This module is a data persistence layer, used to store rules, schemas, dictionaries and 
relevance algorithms. MongoDB will be used as the storage engine.  

Rules Mapper This is responsible for two operations: a) decomposition of EXTRA rules stored in DB into 
simpler rules and b) transformation of rules  into queries expressed in ES Query 
Language that will be the internal representation of the rule classification engine.  

Rules Index This is the indexing structure offered by ES. Τhis module is used for the indexing of rules 
expressed as ES queries.  

Rules Selector This is the module that analyzes input documents, transforms them into percolate queries 
and forwards them to Rules Index for the retrieval of candidate rules.  

Rules Evaluator This processes a set of candidate rules and evaluates whether they actually satisfy the 
input document. As candidate rules can be parts of other rules (as a result of the 
decomposition that takes place in Rules Mapper) this module is responsible to identify the 
initial rules activated by the input document.  

Rules Ranker Rules Ranker applies relevance algorithms (specified or default) in the set of valid rules 
returned by Rules Evaluator, and sorts them according to it.  

 
 

 



 

 
 

Figure 1: Overview of the core EXTRA rule classification engine. The red frame corresponds to the EXTRA API 
(further detailed in D1.2). Interaction can be performed either directly with the API or via the UI supported by the 
framework (blue frame). Green frame contains the modules that are responsible for the matching of documents to 
EXTRA rules. Note that this architecture is independent of the rule language used by EXTRA (more information on 
this is provided in D1.4). 

 
At that point we briefly present three core actions of EXTRA Rule Engine and the modules 
associated with each action. The first  action is the insertion of a new rule from the end user. 
The new rule that is inserted via a call to the corresponding API method is first stored into DB 
and then is forwarded to Rules Mapper. RM analyzes it and presumably decompose it to 

 



 

multiple sub-rules. Each subpart (or the initial rule in case it remained intact ) is transformed to 
ES queries. These queries are forwarded to Rules Index module. The second action is the 
validation of a newly created rule against a schema stored in DB. This validation is a required 
part of the creation process but the end user may want to validate a rule during editing or before 
submission. To this end, the specific schema is retrieved from DB and the rule is checked by the 
corresponding API method. Finally, the third and most important action in EXTRA system is the 
classification of a document by matching it to EXTRA rules. This action is performed by 
following the sequence of modules depicted inside the green frame in figure 1.  Rules Selector 
analyzes input document, transform it to ES percolate query (or Flaxsearch Luwak query) and 
forwarded to to Rules Index. RI retrieves candidate rules that match the document. These rules 
are directed to Rules Evaluator, which retrieves the initial forms of the rules and evaluate 
whether are valid or not. The valid rules are ranked based in the specified relevance algorithm 
by Rules Ranker.  

Rules Mapping, Indexing and Retrieval 
Based on our initial assessment of relevant frameworks, we have identified two frameworks that 
are suitable to base our solution on: a) Elasticsearch Percolator  and b) Flaxsearch Luwak . 2 3

Both support the indexing of a large number of queries and the execution of searches against 
these queries based on an incoming document, i.e. the reverse problem setting of a full-text 
search engine. We have not further considered using UIMA  at this stage, since it could 4

introduce additional complexity, which is not required given the requirements of the project.  
Given a query indexing mechanism in place, we envision that the basis of the EXTRA engine 
will be a component that will transform EXTRA rules  into queries (either Elasticsearch (ES) 5

percolate queries or Luwak queries) that will be indexed and matched against incoming 
documents. Initially, ES has been selected as the indexing mechanism to base the EXTRA 
engine for the following reasons: a) more mature and widely used project, b) richer set of 
features, c) richer and more complete documentation, d) active development community and 
accompanying open-source projects. The only reason why Luwak might be preferable would be 
the lower performance of ES, in terms of response time to queries. However, as will be shown 
through our initial experimental study of ES, which will be presented below, ES exhibits 
promising performance and there do not seem to be obvious bottlenecks. In addition, we make 
the following observations: 

● ES percolate queries and the corresponding API appear to be more expressive and 
easier to map to the EXTRA operators and required features. 

● ES offers a richer set of facilities for indexing, query matching, highlighting and scaling 
through sharding. 

2 https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-percolate-query.html  
3 https://github.com/flaxsearch/luwak  
4 https://uima.apache.org/  
5 The language used to express EXTRA rules will be based on CQL and is further discussed in D1.4. 
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● Luwak features a “presearcher” feature, which is designed to quickly filter a large 
number of queries (rules) and ultimately is expected to lead to faster query search. The 
underlying mechanics and approach of Luwak might be possible to use in tandem with 
an ES index in case performance bottlenecks are identified at the indexing layer. 

Having selected ES as the underlying rule indexing mechanism, considerable research and 
development effort will be necessary due to the following: 

● Mapping of EXTRA rules to queries is not straightforward and several trade-offs need to 
be studied in order to reach an efficient solution that at the same time meets all 
functional EXTRA requirements.  

● Performance may prove to be limited. Previous efforts of using ES percolate 
out-of-the-box are rather discouraging regarding its performance, reporting an average 
throughput rate of one document per second on a query set of 100K documents  (much 6

below the 2M target set by EXTRA). However, as our experimental study will show, this 
does not seem to be an issue anymore (we have tested version 5.2). 

Without any loss of generality, we adopt ES percolate queries to show how classification rules 
can be indexed and retrieved efficiently. In general, ES uses its own domain specific language 
to represent queries and supports two query types: a) boolean and b) span queries. The 
majority of boolean operators that constitute elements of EXTRA classification rules can be 
mapped into these two categories. Table 2 presents the boolean operators that must be 
implemented by EXTRA and the corresponding ES queries. From these operators, #1, #2 and 
#3 can be mapped to simple boolean queries. Nested boolean queries can be used for 
operators #8, #10, #12 and #13. Span queries can represent operators #5, #7, #9, #11, #14. 
Finally, operators #4, #6 and #15-#20 have no direct mapping with ES queries. 

 Table 2: Mapping of EXTRA rule operators to ES queries 

# Operator Definition ES Query 

1 AND Takes two or more statements. Category matches only if 
all the statements are true. 

{"bool":{"must"}} 
 

2 OR Takes two or more statements. Category matches if at 
least one statement is true. 

{"bool":{"should"}} 
 

3 NOT Used in combination with AND. Category matches if the 
statement does not appear in combination with statement 
under the AND. 

{"bool":{"must_not"}} 

4 MINIMUM Combined with a number (e.g., MINIMUM_2). Takes one 
or more statements. Category matches if a minimum of x 
statements from the list appear in the text. 

minimum_should_match 
parameter on a bool query 

5 DISTANCE Combined with a number. Takes two or more statements. 
Category matches if statements are within x number of 
words from each other. 

span_near with slop 
parameter 

6 MINIMUM 
OCCURRENCE 

Combined with a number. Takes one or more 
statements. Category matches if statement appears x 
amount of times in the text. 

 

6 http://underthehood.meltwater.com/blog/2015/09/29/supercharging-the-elasticsearch-percolator/  
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7 ORDER Takes two or more statements. Category matches if 
statements appear in the text in the same order that they 
appear in the rule. 

span query with in_order 
param set to "true" 

8 SENTENCE Takes two or more statements. Category matches if 
statements appear within the same sentence. 

nested AND queries 
(sentences need to be 
indexed as sub-fields in ES) 

9 NOT WITHIN 
DISTANCE 

Combined with a number. Takes two or more statements. 
Category matches if the statements are not within x 
amount of words from each other. 

span_not with dist param 
set 

10 PARAGRAPH Takes two or more statements. Category matches if all 
the statements occur in the same paragraph. 

nested AND queries 
(paragraphs need to be 
indexed as sub-fields in ES) 

11 NOT IN 
PHRASE 

Takes two statements. Category matches if the first 
statement occurs outside of the second statement. 

span_not 

12 NOT IN 
SENTENCE 

Takes two or more statements. Category matches if all 
the statements do appear in the same document, but not 
in the same sentence. 

nested AND queries 
(sentences need to be 
indexed as sub-fields in ES) 

13 NOT IN 
PARAGRAPH 

Takes two or more statements. Category matches if all 
the statements do appear in the same document, but not 
in the same paragraph. 

nested AND queries 
(paragraphs need to be 
indexed as sub-fields in ES) 

14 ORDER AND 
DISTANCE 

Combined with a number. Takes two or more statements. 
Category matches if both statements occur in the same 
order in which they are written in the rule and if both are 
within x amount of words to each other. 

span_near with in_order 
param set to "true" 

15 MAXIMUM 
OCCURRENCE 

Combined with a number. Takes at least one statement. 
Category matches if the statement appears no more than 
x amount of times in the text. 

 

16 FROM START Combined with a number. Takes one or more 
statements. Category matches if the statement appears 
within x amount of words from the start of the text. 

 

17 FROM END Combined with a number. Takes one or more 
statements. Category matches if the statement appears 
within x amount of words from the end of the text. 

 

18 MAXIMUM 
SENTENCES 

Combined with a number. Takes one or more 
statements. Category matches if the statements appear 
within the first x sentences. 

 

19 MAXIMUM 
PARAGRAPHS 

Combined with a number. Takes one or more 
statements. Category matches if statement appears 
within the first x paragraphs. 

 

20 PARAGRAPH 
POSITION 

Combined with a number. Takes one or more 
statements. Category matches if statement appears 
within the x-th paragraph. 

 

 
The operators that have no direct mapping with ES queries are handled by using a relaxation 
approach as follows: given an operator with no direct mapping, we perform a relaxation into a 

 



 

simplified form using boolean operators. This is expected to fetch more candidate rules, some of 
which may not match the query. These will be then filtered out by the RE component, which 
evaluates each of the candidate rules. For example, the MAXIMUM_SENTENCES_X operator 
can be replaced by the AND operator. The relaxed version of such a rule requires the 
statements to co-appear in the whole document. In the evaluation step, the RE would uses the 
original version of the rule that requires the statements to appear within the first X sentences. In 
the same way, MINIMUM_OCCURRENCE_N and MAXIMUM_OCCURRENCE_N have to be 
evaluated a posteriori. As ES cannot perform queries that use the occurrences of a term, these 
two operators cannot be mapped to an ES query. To this end, we relax these operation by 
requesting only the appearance of a term. Evaluation of the number of occurrences is 
performed by the RE module.  
Given the inability of ES to mix boolean with span queries, but also the fact that rules can be 
quite complex, we propose the incorporation of a decomposition step that simplifies the 
classification rules to less complex forms. For example the PARAGRAPH operator, that 
requires that the statements it connects appear in the same paragraph, is implemented in ES as 
nested AND queries, while paragraphs in the document need to be expressed as different 
sub-fields in ES. On the other hand ORDER operator, that demands two statements to appear 
in specific order is mapped to a span ES query . Assuming that a rule combines these two 7

operators e.g. two statements, #1 and #2, appear in the same document but statement #2 must 
appear before statement #1, then we must to split the rule into two parts and evaluate each of 
them separate. As those types of ES queries cannot be combined, the initial rule, expressed as  
 (AND,  

(PARAGRAPH, 
(statement #1),  
(statement #2) 

), 
(ORDER, 

(statement #2),  
(statement #1) 

) 
) 

must be splitted into two parts (one for the PARAGRAPH and one for the ORDER 
sub-statement) and each of them is indexed separately. As both statements must be true, due 
to the AND operator that combine them, to evaluate the whole rule as active both 
sub-statements must be returned by Rules Selector and subsequently evaluated to true by 
Rules Evaluator.  
In case of pure boolean expressions a similar procedure takes place mainly for efficiency 
reason. The first step at this procedure is the transformation of the expression representing the 
rule into a Sum-Of-Products (SOP) form. Namely we rewrite the rules in order to apply OR 
operators to AND expressions. For example, the rule: 

(AND,  
field : exp1,  
(OR, 

7 https://www.elastic.co/guide/en/elasticsearch/reference/current/span-queries.html 

 



 

field  : expr2, field : expr3 
) 

) 
would be transformed into the following form: 

(OR,  
(AND, 

field : expr1, field : expr2 
), 
(AND, 

field : expr1, field : expr3 
) 

)   
We opt for this form as sub-parts of OR operators can be evaluated independently (in parallel), 
given that a sub-part of this form can trigger the whole rule. Note that this step can be avoided if 
the rules are directly written in the SOP form by the end users. We can then map the above 
SOP form into an ES query as a whole, or alternatively use a segmentation approach to split it 
in more simple “independent” parts (sub-rules). The simplest approach is to split the rule to the 
first OR level. For example in the above example we would end up with two rules: (AND, field: 
expr1, field: expr2) and (AND, field: expr1, field: expr3).  
However, it is possible that the expansion of a rule into a full SOP form will result in quite 
complex rules, with subparts that exhibit significant overlap with each other. For this purpose we 
can split the initial rule into finer parts by using its Abstract Syntax Tree (AST). Logical operators 
are the inner nodes of the tree while leaf nodes correspond to terms. Using a depth-first 
traversal of AST, we split the input rule in the OR nodes, leaving intact the sub-trees under AND 
nodes . To sum up, these three rule decomposition approaches (no decomposition, SOP-based 8

and AST-based) can be used interchangeably depending on the complexity of the rule. The 
selected level of decomposition must be the result of a trade-off between rule complexity and 
response time (consumed on rules retrieval) as will described in the next section. A similar 
approach is applied in case of rules that contain operators mapped to span queries mixed with 
boolean operators. For example a NOT_IN_PHRASE operators inside an AND statement 
cannot be mapped directly to an ES query. For that reason the part of the rule under 
NOT_IN_PHRASE operator is treated as a new rule. The mapping of the simple query 
described above to an ES query is performed by Rules Mapper. The final ES query is depicted 
in Table 3.  

Table 3: Example of ES query 

{ 
"query": { 

 "bool" : { 
"should" : [ 

 {"must" : [ 

8 Although the first approach is splitting of rules on OR operators, we may consider decomposition of rules 
on AND nodes in cases of too complex rules. As we will show in the next section, complexity affects 
response time. To this end, it may be necessary to break rules into finer parts even if this decomposition 
takes place between parts combined with AND. At these cases all the generated rules has to be valid to 
trigger the whole rule.  

 



 

 {"term" : { "field" : "expr1" }}, 
{"term" : { "field" : "expr2" }} 

]}, 
{"must" : [ 

 {"term" : { "field" : "expr1" }}, 
{"term" : { "field" : "expr3" }} 

]}, 
] 

 } 
} 

} 

 
As stated by the requirements of EXTRA (req. 7.2.1), rules must be able to reference other 
rules. In that way the system can compose rules by combining existing rules using the 
predefined boolean operators of Table 1. For example given rules Rule1 and Rule2, the user of 
EXTRA can create a new rule Rule3 ← (AND, Rule1, Rule2).  The composition may lead to 
more complex rules by concatenating rules, operators and new expressions of terms. The 
resulting rules are handled in the same way as any other rule in the system, i.e. decomposed 
and indexed in the Rules Index structure.  Rules containing regular expressions (req. 7.2.5) will 
rely on the wildcard query capabilities of ES. 
For the selection of a candidate set of rules the input document is used as a query. As Rules 
are represented in the form of ES queries, we use the percolate query facilities of ES. Percolate 
queries i.e. a special type of queries generated from documents, can be used to match rules 
stored in an index. In other words using this reverse search allows for indexing of rules (queries) 
and percolating an input document to find rules (queries) that will match it. 
In a simple example let us assume that we have documents consisting of two fields: title and 
body. We want to match input documents with the stored rules. First we have to create an index 
for the rules by using the command of Table 4. This index is part of the Rules Index component. 
We define two mappings, one for the documents and one for the rules. At that point, we have to 
note that as EXTRA will be able to support multiple schemas, multiple document mappings can 
be inserted into queries index. Furthermore, data types of fields are defined appropriately. In the 
specific case, title and body are defined as of type “text”, which is a predefined type in ES. In a 
real case scenario, different types have to be defined to support a more elaborated analysis of 
fields, e.g. stemming.  

Table 4: Creation of rules_index (REST call refers to the ES API and should not be confused with the EXTRA API) 

PUT /rules_index 
{ 
    "mappings": { 
        "doctype": { 
            "properties": { 
                "title": {"type": "text"} 
                "body": {"type": "text"} 
            } 
        }, 
        "queries": { 
            "properties": { 
                "query": { 
                    "type": "percolator" 

 



 

                } 
            } 
        } 
    } 
} 

 
To register a rule, we index it on the rules_index created before. For example, using the REST 
call in Table 5, we can register the rule of Table 2 in the created index. The method of Table 5 is 
called by the Rules Mapper, but the actual indexing takes place in the Rules Index. The id of the 
query is 1 as denoted by the ES REST call. Based on the description of query decomposition 
presented above, we can index the query of Table 5 as a whole or split it in two queries that are 
indexed separately. In the latter approach, we use a different id for each of the sub-queries but 
the association to the original query is maintained by adding an extra parentID field in the 
rules_index. Queries with the same parentID are considered as parts of the same query.  

Table 5: Addition of a query (rule) to the index (REST call refers to the ES API and should not be confused with the 
EXTRA API) 

PUT /queries_index/queries/1?refresh 
{ 

"query": { 
 "bool" : { 

"should" : [ 
 {"must" : [ 
 {"term" : { "field" : "expr1" }}, 

{"term" : { "field" : "expr2" }} 
]}, 
{"must" : [ 

 {"term" : { "field" : "expr1" }}, 
{"term" : { "field" : "expr3" }} 

]}, 
] 

 } 
} 

} 

 
Using the command of Table 6, we can search among the stored queries for the subset of those 
that match the input document. In this example, input document is defined as “doctype”, but this 
can be any of the defined document mappings, based on the document schema. This procedure 
takes place in Rules Selector component. To enable highlighting in the response, we can add 
the highlight option of Table 7 in the JSON structure of Table 6. Using this option, the input 
document, and more specifically, the fields title and body will be highlighted inline to indicate the 
terms of the document that match the queries. Highlighting will take place several times, one for 
each matched query.  

Table 6: Searching for indexed queries given an input document (REST call refers to the ES API and should not be 
confused with the EXTRA API) 

GET /rules_index/_search 
{ 
    "query" : { 
        "percolate" : { 

 



 

            "field" : "query", 
            "document_type" : "doctype", 
            "document" : { 
                "title" : "This is the title of the document" 
                "body" : "This is the body of the document." 
            } 
        } 
    } 
} 

 
Table 7: Enabling highlight in the response of percolate query  

"highlight": { 
      "fields": { 
        "title": {}, 
        "body": {} 
      } 
} 

 
An additional mechanism that we plan to use to address the scalability and response time 
requirements for EXTRA is index partitioning. To this end, we consider distinct categories of 
rules: 

1. Rules with simple terms (e.g. such as those described in appendices A.1, A.2 of the 
requirements document) 

2. Rules having stemming and capitalization declarations 
3. Rules with POS tags  
4. Rules with wildcards. 

Each of these categories may be indexed in a different ES index .  As some of the above rule 9

categories can be quite expensive in terms of resources (for instance, rules with wildcards), it 
would be a good idea to keep them in  separate indices, with a size much more limited 
compared to a single index. As a result, matching to the queries of separate indices is expected 
to be much faster than an index that would contain all rules together.  In short, separating 
different rules with different characteristics across different indices can speed-up the execution 
of the RS step for a large part of the queries. The intuition behind this choice is that the majority 
of rules will be simple and will be possible to retrieve quite fast. On the other hand, more 
complex queries require more time per query to be matched but their total number is lower.  

Document Processing 
Input documents to be classified by EXTRA consist of multiple fields. There is a set of 
predefined fields defined by EXTRA (cf. Table 8 for an example). However the user can also 
define his/her own schema, save it to the DB component and validate input documents and 

9 As span queries can be quite complex and require splitting of documents into logical blocks (e.g. 
sentences or paragraphs), it is likely that an extra index would be required to handle this type of queries 
efficiently. However, the final setting will be based on experimentation.  

 



 

rules against it. In case that no other schema is defined, the predefined one is used. Not all 
fields are required, as depicted in Table 8. 

Table 8: Illustration of an example EXTRA document 

{ 
    "kicker": "The Debt Crisis", 
    "summary": "Italy accounts for a third of the eurozone’s nonperforming loans. But that hasn’t stopped its banks 
from extending credit to loss-making companies.", 
    "headline": "Italian Banks Continue to Lend to Stagnant Companies as Debt Pile Mounts", 
    "lede_graph": "In Italy, where two decades of economic stagnation have created a long line of barely breathing 
companies, Feltrinelli, one of the country’s largest booksellers, stands out.", 
    "subsection": "Europe", 
    "section": "World" 
} 

 
 Table 9: Predefined fields of input documents 

Field Description 

Body The text beginning with the first word in the first paragraph to the last word in the final paragraph. 

Byline The author of the asset. 

Dateline The date and location where the reporting occurred. 

Kicker A short phrase that precedes the headline and designates a collection of stories, such as an 
ongoing column or series. 

Headline The title of the asset. 

Lede Graph The first paragraph. 

Section A label for site navigation that groups content topically. 

Subsection A label for site navigation that sits hierarchically under section. 

Summary An abstract of 1-2 sentences that either summarizes the content of the asset, or extracts 1-2 key 
sentence(s) to entice the reader to read more. 

Type of 
Material 

The structural template of the asset, e.g. news article, review, editorial, op-ed, slideshow, photo, 
video. 

 
To support these fields we must add the fields as properties in the mappings of rules_index 
(Table 4). For example in Table 4 we use two properties body and title. These properties can be 
extended to support the fields of the input document of Table 9. To support user-defined 
schemas a new mapping has to be added in the index for each new schema. The type of each 
property/field is defined accordingly.  For example, a field could be a simple type like text, 
keyword, date, long, double or boolean. It is often useful to index the same field in different 
ways for different purposes. For instance, a string field could be indexed as a text field for 
full-text search, and as a keyword field for sorting or aggregations. Alternatively, one could index 
a string field with the standard analyzer, the English analyzer, and the French analyzer. In 
addition, different filters can be defined for a field to support stemming and lower case 

 



 

transformation. This mechanism can be used to support rules based on POS tags, stemming 
and capitalization. 
To make this clear let us consider the case of a simple document containing only the field body. 
In the first case the field is analyzed only using tokenization and a lower-case filter. For the 
second version (stemming and capitalization), we create another representation of the 
document that stems the tokens of the body and creates another field named body_C that 
preserves capitalization. Finally, in case of POS tags, we index not only terms but also their 
part-of-speech tags. These different representations are submitted as independent queries to 
the RS and the results are aggregated to create a single list of candidate rules.  
Of particular interest in this step is the support for concepts (lists of entities). Instead of 
implementing concepts as a separate construct, at this stage, we recommend that they are 
implemented using rules. For instance, a concept named “SOCCER_PLAYER” would be 
imported in the system as a rule with the name “soccer player” and it would consist of many 
entries (e.g. “Cristiano Ronaldo”, “Lionel Messi”, etc.) that are connected with the OR operator. 
In that case, a more complex rule could refer to the rule “soccer_player” as one of its 
components.  

Experimental Evaluation of ES Percolate 
In order to test the performance of ES Percolate as a means of fast retrieval of candidate rules 
for an input document, we performed a set of experiments by using a set of automatically 
generated rules based on the Reuters corpus (Reuters-21578), which consists of 21,578 
articles. These articles consist of several fields, but in our experiment we used only two of them 
that contain the actual content of the articles, title and body. More specifically, we first extracted 
named entities from these two fields, using the Stanford NLP library, including person names, 
organizations and locations from each article. To generate synthetic rules, we kept only 8,350 
articles that had more than four entities. Each entity usually consists of 1 up to 3 terms. For 
each of these articles, we created k-combinations (with k from 3 up to 5) among its entities using 
the AND operator to link them, and then used random subsets of two combinations using the 
OR operator to combine them into more complex expressions. We ended up with 972,696 
unique queries that serve as rules. Each of them has 15 terms and is associated to 1.12 
documents on average, while each document has about 135 associated rules on average. 
To make the procedure more clear let us consider the following example. Given an article that 
contain 5 entities e1, e2, e3, e4, e5 we create k combinations such as (e1, e2, e3), (e1, e2, e4), 
… (e1, e3, e4, e5), etc. Next, we combine them with the AND operator. For example (e1, e2, e3) 
becomes e1 AND e2 AND e3. Finally, by selecting two random combinations we create the rule 
(e1 AND e2 AND e3) OR (e3 AND e4 AND e5). 
For deployment we used Elastic Search on a machine having Intel Core i7-3770K processor 
and 16GB of RAM. We indexed 972,696 such rules using the ES percolation mechanism, and 
then used the set of 8,350 articles as queries. To index the documents we had to transform the 
combinations of named entities described above to Elastic Search queries. First we have to 

 



 

map each entity to an ES query. For example given that entity e1 is the name "ronald reagan" 
we create the following query using the multi_match operator.  
 

{ 
 "multi_match" : { 
 "query":    "ronald reagan", 
 "fields": [ "title", "body" ], 

"operator" : "and" 
} 

} 
 
In our example, we seek for the entity “ronald reagan” to appear in any of the two fields of the 
document, title or body. Note that in the following stages of development these queries can be 
quite more complex with different terms for each field. Also we define the operator to be and as 
we need both terms of the entity to appear in the text. Next we combine each of the multi_match 
queries using boolean queries of ES. As we want to combine them by AND we use the must 
operator as follows: 
 

{ 
 "bool" : { 
 "must" : {  // multi_match query of e1 }, 
 "must": {   // multi_match query of e2 }, 

…… 
} 

} 
Finally, for the OR operation we use should operator: 

{ 
"should" : [ 

 { // must clauses from the first combination of entities }, 
 { // must clauses from the second combination of entities}  
 ] 
} 

 
Table 10 contains some basic performance statistics. Recall value (both micro and macro ) is 10

quite high indicating that the majority of associated rules per article is retrieved successfully. It is 
noteworthy that when we initially measured performance using the predefined analyzers of ES, 
the recall value was below 70%. This was fixed by having rules and articles following the same 
processing steps in ES. 
Precision is still quite low, with micro-precision being around 25%. This means that we retrieve 
four times more rules than the rules that are associated with an article. However, with a close 

10 Given an input document, recall is defined as the fraction of relevant rules retrieved from ES, 
compared to the whole set of relevant rules. Having a set of documents to be evaluated, macro-recall, 
is defined as the average value of recall values calculated for each individual document. On the other 
hand, in micro-average method, individual true positives and false negatives for different documents are 
summed up and the fraction corresponds to micro-recall, is calculated based on these aggregated values.  

 



 

examination of some cases we can observe that usually the retrieved rules are somehow valid 
but we miss that association during the rule creation. There is a set of named entities that occur 
quite often in the articles of Reuters corpus used for evaluation. These entities usually are 
countries and persons such as United States, Soviet Union, Ronald Reagan etc. Some simple 
rules consisted of these frequent terms could be generated by many different articles. But due 
to randomness in the procedure of rules generation (as for each article we keep only a random 
sample of the possible combinations), these rules are associated only to a subset of input 
articles. As this effect concerns mainly the simpler rules we expect that it will be diminished in 
the later stages of development as more complex rules will be used. In any case, note that an 
imperfect value for precision is not an issue as the outcome of this retrieval step will be used by 
the next module of the system that will evaluate the candidate rules exhaustively. 

Table 10: Performance of ES on set of 1M rules using 8K documents as queries. 

Precision 26% (micro), 77.4% (macro) 

Recall 96.7% (micro), 97.5% (macro) 

Response time 270 msec 

 
To investigate the effect of number of indexed rules on rule retrieval time, we conducted a 
similar experiment using indexes of different size. More specifically, we created six indices, 
consisting of 10k, 50k, 100k, 200k and 500k rules, by selecting random rules from the initial rule 
of 972,696 rules. For these indices we calculated the average response time, which is depicted 
in Figure 2. Surprisingly,  response time seems to be higher for smaller indices. For example, for 
10k indexed rules the average response time is 340 msecs, while for the whole index of 
972,696 rules, the response time was around 270 msecs. Our assumption is that this effect has 
to do mainly with the built-in caching mechanism of ES. Its influence seems to be greater for 
larger indices, where there are many rules that match with many documents. Also note that for 
indices larger than 200k rules response time seems to be constant. In all cases, the measured 
response time is considered satisfactory, as its is far below the requirement of 1 second per 
rule.  

 



 

 
Figure 2: Average response time compared to number of indexed rules. 

 
We also investigated the influence of rule complexity on response time. Complexity can be 
measured using several metrics. Given that a rule can be represented as an abstract syntax 
tree, other factors as tree depth and width can constitute measures of complexity.  In our case, 
we chose to define complexity in a simpler way by counting the number of terms in a rule. More 
specifically, following a similar approach as described in the first paragraph of this section, but 
the outer OR combination may consist of more than two parts. Doing this we were able to create 
sets of rules having a varying  number of terms, from 20 up to 100 terms combined with 
AND/OR, and we clustered these rules into five distinct groups (<20, 20-40, 40-60, 60-80, >100 
terms). Each group, having 20k rules each, was indexed in a separate ES index. Response time 
is depicted in Figure 3. As shown in the figure, response time is higher than the initial set of 
rules, and is increased steadily as the number of terms increases. However this rise cannot be 
considered significant, as from 10 to 100 terms response time was increased by less than 15 
milliseconds.  

 
Figure 3: Average response time compared to number of terms in rules. 

 



 

 
A conclusion that can be drawn from the latest experiment has to do with the affection operators 
in response time. As shown in Figure 3, the response time is higher compared to all cases of 
Figure 2. This has to do mainly with the fact that rules of that experiment consist of multiple OR 
clauses. These clauses are more time consuming compared to AND clauses as each subpart 
has to be tested and evaluated. On the other hand AND clauses are evaluated much quicker as 
one missing part is enough to stop examination of the remaining parts. As a result, we conclude 
that normalization / simplification of rules is an important part of EXTRA Rule Engine.  
Finally, we investigated the impact of document length to response time. As documents may 
vary at length, and some of them may be quite long, we would like to know how this parameter 
influences performance. We grouped input documents based on the number of characters into 
11 groups. For each group we generate box-plots of response time, depicted in Figure 4. As 
revealed by the figure, ignoring deviations and outliers, the mean value of response time 
increases as the document length increases.  

 
Figure 4: Response Time compared to document length 

EXTRA User Interface 
A simple and easy to use web-based user interface will be developed on top of the EXTRA API 
that will support the manual management of EXTRA rules. The basic User Stories described in 
Section 5 of the requirements document will be supported through this user interface, namely: 

● Rule management (creation/selection/update/deletion/validation) 
● Document classification 
● Schema management (addition/update/deletion) 
● Dictionary management (addition/update/deletion) 
● Relevance algorithm management (addition/update/deletion)  
● Hit highlighting 

 

 



 

For most of the above features, standard UI elements will be used (lists, tree views, etc.) in 
accordance with best practices for presenting and editing tree-structured documents. In 
addition, intuitive widgets will be developed to make some of the tasks less burdensome for end 
users.  
 

 
Figure 5: Screenshot from UI developed by the team where queries are written into an editor on the left part of the 
screen, and parsed rules shown on the right side.  

 


